ANDRITZ solution for continuous drying:
Krauss-Maffei plate dryer
Low-impact drying
Proven since 1960 in 500 installations worldwide

When continuous drying of free-flowing bulk materials is required, the Krauss-Maffei plate dryer is the right choice.

The Krauss-Maffei plate dryer is a vertically designed, continuous contact dryer/cooler available in atmospheric, gas-tight or vacuum configuration. Hazardous products can be processed in this closed system under vacuum or with inert gas blanketing. The plate dryer treats products very gently and without any impact on the environment. It can safely handle toxic or solvent-containing products. Stationary, horizontal plates in the dryer are heated while rotating arms with plows transport the product in a spiral pattern across the heated surface of the plates. As such, the product is repeatedly turned over and each particle comes into contact frequently with the drying surface. The thin product layer on the surface of the plates in combination with frequent turning over of the product, results in a short retention time and uniform drying. This mode of operation protects the product against thermal degradation.

The fixed plates have a jacket on the underside and can be heated or cooled with a liquid heating medium or steam. Plates can be grouped together to form multiple heating/temperature zones, allowing exact temperature control for optimal thermal treatment. This is a unique ANDRITZ feature for continuous contact dryers. The number and the size of the plates are determined by the heat transfer surface required by the process and the number of temperature zones needed. The maximum heating temperature is 325 °C and the typical heating medium is hot water, steam or thermal oil. Different arm and plow arrangements are possible on each plate: between two and eight arms, plow lengths between 90 and 160 mm, and a forward or backward plow orientation. The plate dryer can also be adapted to specific operating conditions by adding optional features or extra equipment.

Main applications for the chemical industry
- Additives for plastics and rubber
- Detergent additives
- Fungicides
- Herbicides
- Insecticides
- Removing residual monomers from plastics
- Salts
- Aluminum hydroxide
- UV blockers

Main applications for the pharmaceutical industry
- Antibiotics
- Aspirin
- Acetylsalicylic acid
- Caffeine
- Pharmaceutical intermediate products
- Vitamins

Main applications for the food industry
- Tea
- Coffee
- Flavors
- Extracts
- Chocolate crumbs

CONTENTS
- Low-impact drying 02
- Operating principle 04
- High technology 05
- Plate dryer models 06
- Environmentally safe 10
- Extended process 11
- ANDRITZ Gouda test center 12
- Worldwide service 24/7 13
- Dimensions and models 14
Operating principle
Gravity causes vertical product flow

The correct equipment and mode of operation are key considerations at the start of any drying process.

Mode of operation
The wet material to be processed is fed continuously from a feeder (table feeder, rotary valve, vacuum lock …) on the top plate of the dryer. Rotating arms with plows spread the product in a spiral pattern across the heated surface of the horizontal plate. The product is conveyed towards the outer rim of the small-diameter top plate, where it falls over the edge onto the second, larger plate directly below. On this plate, the product is moved inwards towards the central opening through which it cascades onto the next, again smaller plate. It is then conveyed once more towards the outer rim ... And so forth.

The product flows continuously through the vertical dryer. It is turned over repeatedly, and each particle comes into contact with the drying surface of the heated plates. Moisture evaporates from the product during transport through the dryer. Finally, the dried product falls from the last plate onto the bottom surface of the housing, where it is conveyed by means of plows to the discharge port.

The product is dried by evaporating the solvent. A small amount of carrier purge gas or air (in atmospheric and gas-tight plate dryers) is used to transport the vapors out of the dryer. Processing under vacuum means that the product dries, even at low temperatures, without using any inert gas. Due to the reduced evaporation temperature, heat-sensitive products can be dried at lower temperatures.

High technology
State-of-the-art process control

100% of the solvents separated in the plate dryer can be recovered by condensation.

Optimized purge gas flow
For installations containing nitrogen purge gas loops with solvent recovery systems, it is important to optimize the purge gas flow through the system in order to minimize operational costs and dust formation. The latest ANDRITZ Gouda gas-tight plate dryer allows a controlled flow of purge gas through different drying zones. The purge gas enters the process area from the side through diffuser plates and flows across the plates to the exhaust posts on the opposite side. High purge gas velocity in the middle of the dryer provides good heat and mass transfer. Low velocities at the outer diameter keep the amount of dust in the purge gas to a minimum. Dust filters are installed to avoid any product losses.

Ease of use and installation
Simplified start-up, operation, and shutdown of the dryer require minimal process instrumentation and controls.
Thanks to the design of the product conveying system, the dryer is self-emptying.
Excellent cleanability and visual inspection of the dryer interior through large access doors and sight glasses.
Easy installation on site due to complete workshop assembly before delivery.
Only utilities and insulation have to be provided on site.
Minimal floor space required as a result of the vertical design of the dryer.

Arm and plow arrangements
The product transport system consists of a central upright shaft with horizontal arms and plows. On every plate level, two to eight arms are fixed to the shaft. These arms have free-moving plows that gently rest on top of the plate surface. Variable plow widths are available, depending on the product requirements. The transport system is driven by a frequency-controlled drive. Transportation of the product is optimized by using different plow lengths and different plow arrangements. The product's residence time in the dryer can also be adjusted quickly and easily by varying the speed.
Plate dryer models
For atmospheric, gas-tight or vacuum operations

The plate dryer has a modular design. The number and size of the plates depend on the individual application. Three basic dryer models are available, each in different housing configurations and suitable for its own specific operating conditions.

Atmospheric plate dryer, type TTB
The atmospheric plate dryer TTB is designed for handling wet, non-hazardous, non-poisonous bulk materials with atmospheric air as carrier gas. It is a dust-tight system with an exhaust air fan that draws the air through the housing. As the plate dryer is a contact dryer, the air is used to remove the vapor from the drying process. The air temperature is almost equal to the plate temperature. The vapor-laden exhaust air is emitted where necessary after passing through a dust filter system.

1. Table feeder
2. Plate dryer
3. Inlet air filter
4. Air heater
5. Exhaust air filter
6. Exhaust air fan
7. Plate heating
8. Plate cooling
Plate dryer models

Vacuum plate dryer, type VTT
The vacuum plate dryer VTT is typically provided as part of a closed system, designed for processing temperature-sensitive products as well as solvent, wet, toxic, flammable or explosive bulk materials. The exhaust vapor is evacuated by a vacuum pump and passed through a condensation system for solvent recovery. The exhaust air from the vacuum pump consists of non-condensables and some bypassing vapors.

Gas-tight plate dryer, type GTT
The gas-tight plate dryer GTT is best suited for processing toxic, flammable or explosive bulk materials with inert gas as carrier gas. Together with the components of the gas recirculation loop, the GTT forms a closed system. The flow rate of the recirculating purge gas must be sufficient to absorb the vapors generated from the drying process. The gas temperature must be adjusted according to specific product characteristics and the type of solvent. After removal of the vapors by condensation, the purge gas is recirculated back into the dryer via a fan and heat exchanger.
Environmentally safe
High thermal efficiency

ANDRITZ Gouda is constantly aiming for a low environmental footprint.

In any of the Krauss-Maffei plate dryer configurations, environmentally safe operation is key. In atmospheric operation, the dust loading in the exhaust gas is negligible due to low gas velocities in the dryer. Also, operation slightly below atmospheric pressure prevents emissions. The gas-tight configuration is a closed system with recirculated purge gas. Solvent recovery systems are available. The closed system operating under vacuum prevents any release of product or vapors to the surrounding environment. It is known for its simplified solvent recovery with low energy requirement and can be used for heat-sensitive materials.

Reduced energy consumption
- Contact drying yields high thermal efficiency and low energy requirement.
- Low purge gas velocities minimize the energy required to heat the gas in both atmospheric operation and gas recirculation mode.
- Only required vacuum operation, energy is only required for heating of the product to the boiling temperature corresponding the vacuum level and for the heat to vaporize the volatiles.

Extended process
Combination of centrifuge and plate dryer

ANDRITZ Gouda has the capability to supply all ancillary equipment and components for all types of plate dryers.

All three types of plate dryers have the same basic operating principles when installed with a centrifuge. The product is dewatered mechanically in the centrifuge and fed through a feeding/metering device into the top of the dryer. The batch-type operation of machines such as a vertical basket or peeler centrifuge is converted to a continuous feed by a table feeder. In addition, suitable product feed and discharge valves such as vacuum locks or rotary valves complete the system.

Extended process:
Combination of centrifuge and plate dryer

ANDRITZ Gouda has the capability to supply all ancillary equipment and components for all types of plate dryers.
ANDRITZ Gouda test center
The key to good decision-making

ANDRITZ Gouda engineers and technicians have gained experience with more than 8,000 completed applications and 2,000 tested products. In our test centers, we do research on the right type and size of drying equipment for specific drying requirements. To establish the behavior of material to be dried, scale-up tests are carried out on a simulator, in a laboratory or at customers’ plant sites. The simulator operates in conjunction with a data recording and analyzing system in order to evaluate the precise drying times and rates.

Our test center is also equipped with a production-sized atmospheric/gas-tight and vacuum plate dryer for determining product behavior at production scale capacities over an extended period of time. This system can be converted into a small process line by the addition of a mechanical dewatering unit as well as feed (centrifuge) and discharge equipment. With the data gathered during the test work, we are able to size and optimize the dryer and auxiliary equipment.

A world of service
Put our 150 years of OEM experience to work for you

With ANDRITZ SEPARATION, you gain access to one of the world’s largest OEM manufacturers for solid/liquid separation systems, including such well-known names as Bird, KHD, Guinard and more. From initial consulting through to service agreements, plant optimization, automation, and training programs, we are always looking for ways to minimize downtime and increase predictability in operations while raising your overall production efficiency. Wherever you operate, our network of 550 service specialists and global service centers ensures we’ll always be there to support you for many life cycles to come. Let’s sit down and see how we could take your operations to the next level.
Dimensions and models

Three basic dryer models are available, each in different housing configurations and suitable for its own specific operating conditions.

<table>
<thead>
<tr>
<th>PLATE DRYER</th>
<th>MODEL SERIES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type TTB</td>
<td>Atmospheric plate dryer in dust-tight design.</td>
</tr>
<tr>
<td>Type GTT</td>
<td>Gas-tight design with or without closed loop gas recirculation system.</td>
</tr>
<tr>
<td>Type VTT</td>
<td>Designed to operate under vacuum with or without closed loop gas recirculation system.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PLATE DRYER</th>
<th>MODEL SERIES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type TTB</td>
<td></td>
</tr>
<tr>
<td>Type GTT</td>
<td></td>
</tr>
<tr>
<td>Type VTT</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Model size 12 (Nominal diameter of the larger plate 1,200 mm)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Plate surface m²</td>
<td>Drive motor kW inst.</td>
</tr>
<tr>
<td>125</td>
<td>3.5</td>
</tr>
<tr>
<td>128</td>
<td>5.6</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Model size 20 (Nominal diameter of the larger plate 2,000 mm)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Plate surface m²</td>
<td>Drive motor kW inst.</td>
</tr>
<tr>
<td>20/5</td>
<td>12.5</td>
</tr>
<tr>
<td>20/8</td>
<td>20.0</td>
</tr>
<tr>
<td>20/11</td>
<td>27.5</td>
</tr>
<tr>
<td>20/14</td>
<td>35.0</td>
</tr>
<tr>
<td>20/17</td>
<td>42.5</td>
</tr>
<tr>
<td>20/20</td>
<td>50.0</td>
</tr>
<tr>
<td>20/23</td>
<td>57.5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Model size 27 (Nominal diameter of the larger plate 2,700 mm)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Plate surface m²</td>
<td>Drive motor kW inst.</td>
</tr>
<tr>
<td>27/11</td>
<td>55</td>
</tr>
<tr>
<td>27/14</td>
<td>70</td>
</tr>
<tr>
<td>27/17</td>
<td>85</td>
</tr>
<tr>
<td>27/20</td>
<td>100</td>
</tr>
<tr>
<td>27/23</td>
<td>115</td>
</tr>
<tr>
<td>27/26</td>
<td>130</td>
</tr>
<tr>
<td>27/29</td>
<td>145</td>
</tr>
<tr>
<td>27/32</td>
<td>160</td>
</tr>
</tbody>
</table>

* These figures refer to the areas of the large plates.
ANDRITZ Gouda
ANDRITZ Gouda has been implementing complete process solutions for the environmental, chemical, and food industries for over 100 years. As a machine manufacturer as well as process solutions expert, ANDRITZ Gouda is able to handle all of the stages involved in designing and building plants, including engineering, service, installation, and commissioning.

ANDRITZ Gouda, as part of the international ANDRITZ GROUP, has several pilot plants available to test new materials, generate design data, and provide representative product samples. The proven calculation model for scaling up to industrial size ensures successful application in full-scale processing.